Cloud Properties Retrieved from Airborne Measurements of Transmitted and Reflected Shortwave Spectral Radiation

By <u>Samuel E. LeBlanc</u>¹, Jens Redemann², Michal Segal-Rosenheimer³, Meloë Kacenelenbogen³, Yohei Shinozuka³, Connor Flynn⁴, Philip Russell², Beat Schmid⁴, K. Sebastian Schmidt⁵, Peter Pilewskie⁵, Shi Song⁵

¹ORAU/NASA Ames Research Center, Moffett Field, CA, USA, ²NASA Ames Research Center, Moffett Field, CA, USA, ³BAERI/NASA Ames Research Center, Moffett Field, CA, USA, ⁴Pacific Northwest National Laboratory, Richland, WA, USA ⁵ATOC/LASP, University of Colorado, Boulder, CO, USA

Instrument and measurements

Instrument and Measurements

4STAR – Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research

- Measures direct sun irradiance and sky radiances (including zenith)
- Spectral range: between ~350 nm and ~1700 nm
- Many operating modes

Focus on Zenith mode

Remote sensors based on reflected and

transmitted light

(enhanced MODIS airborne simulator)

RSP

(Research Scanning Polarimeter)

SSFR

(Solar Spectral Flux Radiometer)

CPL

(Cloud Physic Lidar)

4STAR
SSFR
Cloud
probes

MODIS

APR-2

Theory and summary of new retrieval

Radiative transfer theory

Reflection (eMAS, RSP, SSFR)

τ, r_{eff} , and φ

(thermodynamic phase)

Zenith radiances under clouds show different spectral shapes depending on cloud properties

Case study of Flight on September 13th, 2013 "Hurricane Ingrid"

A case study of clouds near tropical storm Ingrid in the Gulf of Mexico

Comparing sampling area of the different remote sensors

Horizontal variations of cloud properties due to differences in Field-of-View

Reflectance-based remote sensors see a different part of the cloud than 4STAR Cloud layers from CPL

Comparing cloud retrievals from transmitted

and reflected light

Variability in r_{eff} is directly linked to vertical sampling of the cloud

Variability in τ partially explained by differences in horizontal field-of-view SSFR variability may be due to 3D effects

Approximate vertical sampling of different measurements

Using retrieved cloud properties to model below-cloud shortwave radiative effect

Radiative effect = Net $irradiance_{Cloudy}$ - Net $irradiance_{clear}$ Modeled irradiances based on average retrieved properties for wavelengths 350 nm - 1700 nm

Summary

- Clouds modulate transmitted light in a spectrally dependent manner
- 4STAR uses measurements of spectral shapes of transmitted light to retrieve cloud optical depth, cloud particle effective radius, and thermodynamic phase.
- Using transmitted light gives a different sampling volume, which may be more representative of the entire cloud layer and more relevant to surface energy budget considerations
- By estimating cloud radiative effect below cloud, transmitted light based retrievals result in $54.5 113.0 \text{ W/m}^2$ less radiative effect for one case study. Within variability of measurement based estimates.

Extra slides

Parameters are defined to quantify the spectral shapes – basis of new retrieval method

Spectral shapes are sensitive to Cloud optical depth, effective radius, and thermodynamic phase

Spectral shapes are sensitive to Cloud optical depth, effective radius, and thermodynamic phase

Instrument and Measurements

SEAC4RS – Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys:

August – October 2013

Based out of Houston, TX

4STAR cloud retrievals during TCAP

4STAR zenith cloud retrievals, match MODIS ice cloud retrievals

2012 02 10